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BODY OF REPORT
A. STATEMENT OF PROBLEM STUDIED

The objective of this research is to develop, validate and evaluate novel semi-active and active-passive
hybrid adaptive structures for real-time vibration suppressions. These types of structures normally
require less power than the fully-active systems. Also, since energy is almost always being dissipated,
they are more stable than the active approach. In other words, they have the advantages of both the
passive (stable, low power requirement, fail-safe) and active (high performance, feedback actions)
systems. They will thus eliminate the concems that people have with active devices, and yet still
outperform the classical passive systems. The major research tasks include (a) actuator concept
development, (b) actuafor/étructure modeling and characterization, (c) control law development and
system integration, (d) control-configured adaptive structure design methodology development, and (e)

experimental validations.
B. SUMMARY OF THE MOST IMPORTANT RESULTS

(1)  The Penn State researchers have developed a comprehensive model and nonlinear control
laws for semi-active electrorheological (ER) fluid dampers. It is found that both the pre-yield and
post-yield conditions of the fluid have to be considered in the modeling process. Given periodic
displacement inputs, the damper force is measured. When the pre-yield contribution is significant,
Figure 1 demonstrates th;t fhe comprehensive model developed at Penn State can represent the

experimental results much better than the classical Bingham model.

A nonlinear feedback control system is designed, based on the theory of Sliding Mode, for semi-
active vibration suppressions through controlling the ER actuator viscous and frictional damping
characteristics. A lab fixture is set up to evaluate the semi-active concept (Figure 2). The
experimental hardware consists of a cantilever beam (6061-T6 aluminum, 635mm x 38.1mm x
6.35mm) with the ER damper connected at the tip. The control law is implemented through a
TMS320-C25 DSP board with the necessary D/A and A/D boards (interfaced with a PC-386




machine). The output signal is obtained using two strain gages mounted to the beam in a half-bridge
configuration. To provide the electric field necessary for activating the ER fluid, a Bertan 602B high
voltage (0 to 10kV) power supply is used. Given an initial displacement of the beam tip, the time
response of the structure is illustrated in Figure 3. When no electric field is applied, the system
response will overshoot and oscillate before reaching the equilibrium. With maximum electric field, no
overshoot will occur. However, the beam is not returning to its original configuration. This
phenomenon, which is also predicted in the numerical simulation, is mainly caused by the significant
frictional force of the actuator when high voltage is being applied. With the semi-active action, the test
results show that the structure vibrations are damped out very effectively. That is, the system returns

to its equilibrium configuration with fast decay rate and no overshoots.

With the validated model, the characteristics of the ER fluid damper are also incorporated in the

design of an adaptive vibration absorber. Implementing the absorber on a vibrating structure, the
main structure frequency response is shown in Figure 4. It can be observed that the system with

the ER fluid vibration absorber outperforms (exhibits lower level of vibration through out a wide
frequency range) systems with optimally tuned passive absorbers (damped and undamped). This

illustrates that the adaptive properties of an ER fluid damper can be well utilized to provide

superior performance and flexibility over a passive viscous damper.

(2)  The Penn State researchers have developed adaptive structures with piezoelectric
materials and real-time-controlled (significantly different from the past passive and quasi-static
methods) semi-active electrical networks. An energy analysis is performed to identify the energy
distributions of the actuators and structural components. Based on this analysis, a novel energy-
based nonlinear scheme is synthesized for on-line vibration controls. With this control law, the
total system energy (the main structure mechanical energy plus the electrical and mechanical
energies of the piezoelectric material and electrical circuit) will always be reduced to ensure

stability while energy of the main structure will be constrained to suppress vibration.

To evaluate the semi-active system performance, analysis is carried out on a beam structure

(Figure 5). Given an impulse input, Figure 5 illustrates time response of the beam vibration.



Comparing to an uncontrolled (short circuit) case, the system’s vibration suppression capability is

much improved (faster decay rate of response) when the semi-active action is activated.

(3)  The Penn State researchers have developed innovative piezo-based intelligent structures
with active-passive hybrid electrical networks. The hybrid networks consist of the piezoelectric
materials in series with an active voltage source and passive shunt circuits (Figure 6). A method
is created to systematically and simultaneously optimize the active control gains and the values of
the shunt resistor and inductor. It is shown that this active-passive approach can outperform the
purely-passive system (more vibration reduction). It is also illustrated that the hybrid structure
can achieve better vibration suppression performance while requiring less control effort when

compared to a purely active system.

The controlled and uncontrolled (short circuit) cases are compared in Figure 7 (random excitation
applied to structure), where the effectiveness of the active-passive controller is clearly
demonstrated. To further investigate the merit of the hybrid system, we compare it against the
purely active case (no passive circuit). It is shown that the active-passive design results in a better
structure response (smaller standard deviation of vibration amplitude). A comparison of the
required voltage for both the active-passive and purely active systems is also illustrated in Figure
7. From this figure, it is clear that the hybrid design not only achieves better vibration control

" performance compared to the active approach but also requires less effort (voltage).

(4)  The Penn State researchers have developed new active constrained layer (ACL) treatments
for active-passive hybrid structural controls. A current active constrained layer (ACL) system
generally consists of a piece of passive viscoelastic damping materials (VEM) sandwiched between an
active piezoelectric layer and the host structure. It has been shown that the ACL treatments can
enhance the system damping when compared to a traditional passive constrained damping layer
approach. However, when compared to a purely active case (zero VEM thickness), the ACL
viscoelastic layer will reduce the direct control authorities from the active source to the host

structure, due to the reduction of transmissibility.




In this research, the Penn State researchers first developed a thorough analysis to understand the
contributions of the differeﬁt actuator elements, which provides design guidelines for one to select
the correct ACL and VEM parameters. With such guidelines, one could achieve a truly effective
active-passive hybrid system that would outperform both the purely active and passive cases.

Based on such understanding, the Penn State researchers further created a new active constrained
layer configuration (Figure 8) to improve the active action transmissibﬂity (control authority) of
the current ACL treatment. Introducing an edge element, the active action from the piezoelectric
cover sheet can be transmitted to the host structure more directly. On the other hand, such a
configuration still has the damping ability of the passive VEM. In other words, it has the benefits
of both the current ACL and a purely active system. Experimental results indicate that the new
configuration has significantly more control authority (active action transmissibility) than the

current ACL treatments (see Figure 9).

From our study, it is recognized that the new ACL can greatly enhance the active action
transmissibility while retaining a similar level of passive damping ability, when compared to the
current ACL. The major interest now is to study the overall system performance combining the
active and passive actions. To investigate this, we define an index /,, representing the vibration
suppression ability per control effort, which indicates the effectiveness or efficiency bf the active-

passive hybrid actions.

The I, value versus x (viscoelastic material parameter related to shear modulus) and «
(viscoelastic material parameter related to loss factor) for the current and new ACLs is plotted in
Figure 10. The purely active case (corresponding to a flat plain since no VEM is involved) is also
plotted for the purpose of comparison. The region in which the 7, value of the ACL is larger
than that of the active system (flat plain) will give us a design that can outperform both the purely
active and passive approaches. On the other hand, the region in which the ACL I, surface is
lower than the flat plain (purely active results) is not desirable. Following this argument, we see
that the current ACL system has a very limited VEM design space (Figure 10(a)). With the new
edge elements, the /,, value of the new ACL in the original undesirable VEM region in Figure
10(a) becomes greater than that of the purely active case (Figure 10(b)). In fact, the new ACL



will outperform the active configuration in the complete x -« range in Figure 10(b). Through
broadening the VEM design space, we are now achieving a more robust design (performance is

less sensitive to the viscoelastic material properties).

To illustrate the improvement of the new ACL over the current ACL, examples of a beam impulse
response are illustrated in Figure 11. With the given VEM material and ACL configuration, it is
shown that the current ACL treatment requires more control effort while achieving less vibration
reduction when compared to a purely active system. By adding the edge elements, the new ACL
not only can outperform the current ACL significantly (more vibration reduction with less control

effort), but also shows improvement over the purely active system.
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